Sampling techniques

DyCors.sampling.LatinHyperCube(m, d)[source]

Non-symmetric Latin Hypercube [1].

Data is sampled at the center of the bins.

Parameters
mint

Number of sampling points.

dint

Number of dimensions.

Returns
sndarray, shape (m,d,)

Sampling data. \(s \in \mathbb{R}^d : 0 \leq s \leq 1\).

References

1

Helton, J C and F J Davis. 2003. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliability Engineering & System Safety 81 (1): 23-69.

DyCors.sampling.SLatinHyperCube(m, d)[source]

Symmetric Latin Hypercube [1].

Data is sampled at the center of the bins.

Parameters
mint

Number of sampling points.

dint

Number of dimensions.

Returns
sndarray, shape (m,d,)

Sampling data. \(s \in \mathbb{R}^d : 0 \leq s \leq 1\).

References

1

Helton, J C and F J Davis. 2003. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliability Engineering & System Safety 81 (1): 23-69.

DyCors.sampling.RLatinHyperCube(m, d)[source]

Non-symmetric random Latin Hypercube [1].

Data is randomly sampled using a uniform distribution inside each bin.

Parameters
mint

Number of sampling points.

dint

Number of dimensions.

Returns
sndarray, shape (m,d,)

Sampling data. \(s \in \mathbb{R}^d : 0 \leq s \leq 1\).

References

1

Helton, J C and F J Davis. 2003. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliability Engineering & System Safety 81 (1): 23-69.

DyCors.sampling.RSLatinHyperCube(m, d)[source]

Symmetric random Latin Hypercube [1].

Data is randomly sampled using a uniform distribution inside each bin.

Parameters
mint

Number of sampling points.

dint

Number of dimensions.

Returns
sndarray, shape (m,d,)

Sampling data. \(s \in \mathbb{R}^d : 0 \leq s \leq 1\).

References

1

Helton, J C and F J Davis. 2003. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliability Engineering & System Safety 81 (1): 23-69.

DyCors.sampling.ERLatinHyperCube(m, d)[source]

Non-symmetric enhanced random Latin Hypercube [1].

Data is randomly sampled using a uniform distribution inside each bin.

Parameters
mint

Number of sampling points.

dint

Number of dimensions.

Returns
sndarray, shape (m,d,)

Sampling data. \(s \in \mathbb{R}^d : 0 \leq s \leq 1\).

References

1

Beachkofski, B and R Grandhi. 2002. Improved Distributed Hypercube Sampling. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado.

DyCors.sampling.ERSLatinHyperCube(m, d)[source]

Non-symmetric enhanced random symmetric Latin Hypercube [1].

Data is randomly sampled using a uniform distribution inside each bin.

Parameters
mint

Number of sampling points.

dint

Number of dimensions.

Returns
sndarray, shape (m,d,)

Sampling data. \(s \in \mathbb{R}^d : 0 \leq s \leq 1\).

References

1

Beachkofski, B and R Grandhi. 2002. Improved Distributed Hypercube Sampling. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver, Colorado.